A framework for cost-constrained genome rearrangement under Double Cut and Join

نویسندگان

  • Pijus Simonaitis
  • Annie Chateau
  • Krister M. Swenson
چکیده

The study of genome rearrangement has many flavours, but they all are somehow tied to edit distances on variations of a multi-graph called the breakpoint graph. We study a weighted 2-break distance on Eulerian 2-edge-colored multi-graphs, which generalizes weighted versions of several Double Cut and Join problems, including those on genomes with unequal gene content. We affirm the connection between cycle decompositions and edit scenarios first discovered with the Sorting By Reversals problem. Using this we show that the problem of finding a parsimonious scenario of minimum cost on an Eulerian 2-edge-colored multi-graph – with a general cost function for 2-breaks – can be solved by decomposing the problem into independent instances on simple alternating cycles. For breakpoint graphs, and a more constrained cost function, based on coloring the vertices, we give a polynomial-time algorithm for finding a parsimonious 2-break scenario of minimum cost, while showing that finding a non-parsimonious 2-break scenario of minimum cost is NP-Hard.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rearrangement Models and Single-Cut Operations

There have been many widely used genome rearrangement models, such as reversals, Hannenhalli-Pevzner (HP), and double-cut and join. Though each one can be precisely defined, the general notion of a model remains undefined. In this paper, we give a formal set-theoretic definition, which allows us to investigate and prove relationships between distances under various existing and new models. Amon...

متن کامل

A Gene Family-Free model for Genome Rearrangements with Insertions and Deletions

In comparative genomics methods for structural evolution, a common pre-processing step is to perform an orthology detection method to classify genes into gene families, in order to represent each chromosome as an ordering of genes of the detected families. This allows, for instance, the application of genome rearrangement distance methods, such as the Double Cut and Join model. A recent approac...

متن کامل

TIBA: a tool for phylogeny inference from rearrangement data with bootstrap analysis

TIBA is a tool to reconstruct phylogenetic trees from rearrangement data that consist of ordered lists of synteny blocks (or genes), where each synteny block is shared with all of its homologues in the input genomes. The evolution of these synteny blocks, through rearrangement operations, is modelled by the uniform Double-Cut-and-Join model. Using a true distance estimate under this model and s...

متن کامل

Algebraic double cut and join : A group-theoretic approach to the operator on multichromosomal genomes.

Establishing a distance between genomes is a significant problem in computational genomics, because its solution can be used to establish evolutionary relationships including phylogeny. The "double cut and join" (DCJ) model of chromosomal rearrangement proposed by Yancopoulos et al. (Bioinformatics 21:3340-3346, 2005) has received attention as it can model inversions, translocations, fusion and...

متن کامل

Combinatorial Structure of Genome Rearrangements Scenarios

In genome rearrangement theory, one of the elusive questions raised in recent years is the enumeration of rearrangement scenarios between two genomes. This problem is related to the uniform generation of rearrangement scenarios and the derivation of tests of statistical significance of the properties of these scenarios. Here we give an exact formula for the number of double-cut-and-join (DCJ) r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.07515  شماره 

صفحات  -

تاریخ انتشار 2018